
 Parallel Program

 Development and Execution

 Platform as a Service

 THROUGHPUTER

© ThroughPuter, Inc. All rights reserved.

Manycore Cloud Computing Challenge - Technical

2

Example:

Average core demands by

applications sharing a 16-core processor

app1

12.5%

app2

25%

app3

12.5%

app4

50%

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

16

cores demanded

time / microsecond

Actual core demands by applications over 10us period

app1

app2

app3

app4

1
2

3
4

0

1

2

3

4

5

6

7

8

9

Cores

Application #

Actual and average core demands at t = 6 microseconds

cores demanded

static allocation

Idle
capacity

Blocked
demand

© ThroughPuter, Inc. All rights reserved.

Manycore Cloud Computing Challenge - Economical

• The actual, momentary processing capacity demand by any given individual application program
hardly ever equals its ‘average’ demand

 Non-adaptive capacity partitioning leads to wasting of resources and blocking on-time throughput

• Capacity being held statically in reserve for idling applications should have been allocated to other
applications on the manycore processor that at that time would have been able to use it

1
2

3
4

0

1

2

3

4

5

6

7

8

9

Cores

Application #

Actual and average core demands at t = 6 microseconds

cores demanded

static allocation

Blocked
demand

= lost
revenue

Idle
capacity

 = wasted
cost

3

© ThroughPuter, Inc. All rights reserved.

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Time / microsecond

C
o

re
s
 d

e
m

a
n

d
e
d

 b
y
 a

n
 a

p
p

li
c
a
ti

o
n

Realtime demand

of the application

Average demand

of the application

Manycore Cloud Challenge – ThroughPuter’s Solution

Dynamic
allocation of

otherwise idle
capacity

to other app:s
that can use it

..to enable
on-demand

bursting
for maximized

on-time
throughput

per given cost

• ThroughPuter enables application load adaptive,
dynamic parallel cloud computing

4

© ThroughPuter, Inc. All rights reserved.

What ThroughPuter Brings To Party

• New manycore processor architecture designed from
ground up for secure, dynamic parallel cloud computing
– More about this under Key Advantages…

• User-friendly access to high-performance of hardware
through Platform-as-a-Service (PaaS) business model
– New hardware architecture to eliminate, not cause, parallel

processing software headaches

• Open-source collaboration for comprehensive parallel
computing PaaS:
– Entire PaaS platform software, as well as the processor core

hardware model (Verilog), open-sourced

– Parallel processing an industry-wide challenge
 Industry-wide collaborative solution and holistic platform approach needed

– See architecture overview & motivation at next 2 slides

5

© ThroughPuter, Inc. All rights reserved.

 core . . .

 .
 .
 .

Patents issued and pending. 6

Application tasks, residing in their dedicated memory segments

Hardware operating system and dynamic on-chip network:

• Switch application tasks to execution cores based on load demands and contractual policies
•Dynamically, efficiently and securely connect tasks of any given app, rather the cores statically

 Simpler implementation, higher performance

•From each application: core demand
expressions, task priority lists
•For each app: sets of tasks for execution

core

core

core

Core array

app0
task1

. . .

 .
 .
 .

app1
task0

app0
task2 appN

taskM

Parallelized

application tasks
(executables)

 ThroughPuter: Platform Overview

Execution
environment
• hardware
• dynamically
self-
operating
under
contract
policies

Development
environment

• open
sourced

• software

Open
standard
interface

User interface and development tools:
• GUIs, flow charts, code-advisors for parallelizing application programs (e.g. web based Eclipse)

• Compilers

© ThroughPuter, Inc. All rights reserved.

 Open Parallel Computing PaaS

Reasons for software ecosystem for parallel computing platform to be
based on the dynamic parallel execution environment interface standard:

1) Less low-level work: ThroughPuter’s execution environment automates
parallel execution routines in (programmable) hardware, providing higher
level interface (API) for the development environment software

2) Higher performance due to minimum-overhead hardware automation of
system tasks such as optimally allocating processing capacity, scheduling and
placing application tasks for execution, inter-task communications, billing etc.

3) Built-in cloud computing security: unauthorized interactions between
different applications simply not enabled in the hardware

4) Open standard interface between development and execution environment

7

© ThroughPuter, Inc. All rights reserved.

Key Advantages #1 – Dynamic Parallel Processing

• Hardware operating system designed for parallel
processing on multi-client shared manycore processors

– Dynamic parallel computing with strict minimum capacity
access guarantees:

• Each client program gets the maximized number of cores that it can
use at any given time so long as all clients get their materialized
demand for cores met at least up to their entitled and fair share

– Automated, minimum-overhead interaction with applications:
• PaaS development tools configure client programs so that they express

to the HW OS their parallel execution ready tasks in priority order

• HW OS selects and maps tasks for execution at their assigned cores

• HW OS and on-chip network take care of inter-task communication,
without requiring the tasks to know whether or where any given task is
running at any given time See system and operating diagrams on next slides 

8

 Maximized application processing throughput per unit cost

© ThroughPuter, Inc. All rights reserved.

Hardware operating system

STEP 1
Once per a

core
allocation
period (e.g.

microsecond) :
Allocate
cores to

applications

Core demand
figures

from
applications

Manycore processing fabric

Ready-task priority
ordered lists from
applications, along with
core types demanded
by each task

STEP 3

For each application:

Map selected new tasks
to available cores slots

(reconfigured to new, desired core
types as needed, e.g. GPU, DSP, ASP, or

the default CPU type)

For each core:
Active
application
task ID

For each
application:
Number of
cores
allocated

For each task:
Processing
core ID and
core type

For each
application:
List of
selected
tasks, along
with their
demanded
core types

Billing

subsystem

For each application:
Core entitlements For each application:

Billables

 To/from contract management system

STEP 2

For each
application:

Select
to-be-

executing
tasks

time
tick

core
slot

core
slot

core
slot

. . .

Fabric network and memories

core
slot

core
slot

.

.

.

9 Patents issued and pending.

© ThroughPuter, Inc. All rights reserved. 10 Patents issued and pending.

time X us

app1

app2

app3

app4
Dynamic Core Allocation Example

Core Allocation Period (CAP)

All tasks
continuing on

consecutive CAPs
stay on their

existing core, and
continue

processing
uninterruptedly

through CAP
boundaries

Allocation of
cores re-

optimized among
applications for
each new CAP
based on core
demands and

entitlements of
the applications

X+1 us

Any application
can burst even up
to full capacity of
the shared core
pool, as long as

actually
materialized core
demands by other
apps are met up to
their entitlements

X+2 us

Any task can
communicate
with all other
tasks of the
application

without having to
know whether or
at which core any

given task is
running

X+3 us

Core (in 16-core array)

© ThroughPuter, Inc. All rights reserved.

Key Advantages #2 – Inbuilt Security = Productivity

• Dynamic cloud computing with built-in security:
– Unauthorized interactions and undesired interferences

between client applications or the system not even enabled in
the hardware logic

– Each client program completely resides in its dedicated
memory segments

– At any given core allocation period, tasks of only one chosen
application to run on any given core

– Clients isolated from each others already at hardware
resource access level

• Productivity:
– Each application, while able to access the full manycore array

processing capacity, can be developed, tested and run
completely independent of other applications on the system

11

Security risks prevented at hardware level, not pushed to software

© ThroughPuter, Inc. All rights reserved.

Key Advantages #3 – Contracts Optimized for Cloud

• Straightforward contracts:
1) Each app assured to get at least up to its contractually entitled share of core

capacity (Core Entitlement, CE) whenever its actual demand so warrants
2) All cores assigned among the apps for each core allocation period (CAP),

using demand-driven allocation after condition 1) met
 Each client app allowed to burst to up to the full capacity of the shared core pool,

so long as condition 1) above met for all apps sharing given pool of cores

• Incentives for system-wide optimized resource usage:
– Contracts available with differing CE-time profiles (e.g. targeted for apps with

business hours, evening-hours and overnight peak demands)
• Contracts of minimally overlapping CE time profile peaks to share pools of cores
 Common costs shared among greater # clients w/o performance drawback

– Apps billed at CAP (1 microsecond) time granularity based on:
• CE based on the app’s contract, and
• Numbers of cores allocated to meet the app’s demand
 Apps incentivized to not demand more cores than what they are able to

effectively utilize at any given CAP

 Maximum amount of cores available for demand-driven allocation to meet
demand peaks of applications able to most effectively use the extra cores

12

See diagram of billing subsystem on next slide 

© ThroughPuter, Inc. All rights reserved.

For each
client application

program:
Billing subsystem

 CE
(variable per

contract
instance and

over time)

Billables for successive core
allocation periods
(1 microsecond each)

Number of
cores
allocated

Core entitlement
(CE)

based billing
counter

Core allocation
period boundary
time tick

CE billing rate
(time variable per
contract profile)

DBCA billing rate
(time variable per
contract profile)

Demand based
core allocation

(DBCA)
based billing

counter

Adder

To/from
contract
management
system

CE based
billable-
component

DBCA based
billable-
component

Core
demand

figure

13 Patents issued and pending.

© ThroughPuter, Inc. All rights reserved.

Key Advantages #4 – Maximized Cloud Cost-Efficiency

• Efficiency:
– Processing capacity of manycore array used for client programs, not OS tasks

• Client applications can have their independent software OSs if/as desired

• Ultra-fast responsiveness:
– Cores of manycore array reassigned among application tasks at microsecond

intervals (based on applications’ core demands and entitlements), practically
without overhead

• Productivity:
– Parallelization of the programs in development and execution automated

through the PaaS integrated development environment and hardware OS

• Flexibility and scalability:
– Programmable logic implementation enables customizing instances for

desired # of cores and # of applications/tasks supported

• Billing techniques to incentivize optimized resource usage

14

 Architecturally maximized cost-efficiency for parallel computing era

© ThroughPuter, Inc. All rights reserved.

ThroughPuter – Summary of Advantages

• PERFORMANCE and COST-EFFICIENCY:
– Architecturally maximized application processing on-time

throughput per unit cost
• Hardware operating system and on-chip network optimized for dynamic

parallel processing on multi-client shared manycore processors

• SECURITY:
– Full isolation among client applications dynamically sharing a

pool of cores from hardware level up

• PRODUCTIVITY:
– PaaS integrated development environment automate parallel

program development and deployment

• OPEN SYSTEM:
– PaaS software and execution core hardware to be open-sourced

– Host anywhere; ThroughPuter commercial hosting an option

15

© ThroughPuter, Inc. All rights reserved.

Call for Collaboration

• The need for parallel processing an emerging, MAJOR
industry and profession wide challenge
 Open-source collaboration a natural approach

• Need for architectural optimization across traditional
application, system and hardware layer boundaries

SOLUTION: Open-source PaaS reaching all the way to
parallel cloud computing optimized hardware
– ThroughPuter’s contribution: Hardware architecture designed

for dynamically shared multi-user parallel cloud computing
• Secure hardware OS for manycore fabric with on-chip network, taking

care of dynamic capacity allocation, parallel program execution & billing

– Collaboration opportunities:
• Development environment and tools to enable client programs to most

effectively utilize the new hardware features for secure, high-
performance and cost-efficient parallel processing in the cloud

16

Collaborators in parallel processing
PaaS domain - please contact:

info@throughputer.com

www.throughputer.com

mailto:info@throughputer.com
http://www.throughputer.com/

